| mojojojo100 a întrebat:

Cine imi da niste formule de chimie(concentratie,densitate,volum,etc.)? Dau Funda!
Specific ce nu-i o tema, vreau doar sa le inteleg...

1 răspuns:
| Cristi2001HelperTpu a răspuns:

Pai uite sa iti explic...
concentratia=(masa pura*100) :masa impura ---->pentru ca ea se detarmina in necunoscuta x%, e nevoie de *100

Apoi, Volumul la cub este l la puterea a III-a La paralelipiped dreptunghic este L*l*h si cam asta se da, eventual la sfera(desi nu cred ca ati ajuns inca acolo) este data:image/jpeg; base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxQQEBAUEBAQFBQQEBQVFBQQERQWFRUUFRQWFhQVFRUYHCggGBolGxQZITEhJSkrOi4uFx8zOTMsNygtLisBCgoKDg0OFQ8PFSscHB0tKzQ3LCwtLCs4Kzg3LTc3KywrLC03KywrKywrNys3LCwrLCsrLCsrKyssKyssKywrK//AABEIALEBHAMBIgACEQEDEQH/xAAbAAACAgMBAAAAAAAAAAAAAAAAAgMGBAUHAf/EAEcQAAEDAgIECwYDBgQFBQAAAAEAAgMEEQUSITEzUQYTQVNhcXORsbLRFRYiMoGiFEJyIzRDUmKhgpLw8Qckg8HhRGOEo8L/xAAZAQEBAQEBAQAAAAAAAAAAAAAAAQQDAgX/xAAfEQEAAgMBAQADAQAAAAAAAAAAAhQBA1EzMRESEwT/2gAMAwEAAhEDEQA/AL9w42sXZnzKoTYlGxxa59iNYsfRW/hztYuzPmXLsa28nWPALD/PE9ssZb/6Z16Y5w3/ALYh5z7Xei89sw859rvRVEpSulWHcudufMLf7ag537Xei89uQc79rvRU5yQpVh3JbnzC6e3YOd+13ovPb0HO/a70VJckJSrHuS3PmF59vQc79rvRHt6Dnftd6Kh5kZkqw7ktz5hfPb0HO/a70R7eg537XeioeZGZSrDuS3PmF89vQc79rvRHt6Dnftd6Kh5kZkqw7ktz5hfPb0HO/a70R7eg537XeioeZSU8TpHtZG0ue9wa1o1knUArVh3JbnzC8e3oOd+13oj29Bzv2u9FXa3gxURRyPPEvEW1EM7JHxch4xoOix161i1WEyRQRzvMQZKAWNMreNLSSA/i9YboOlKse5Lc+YWz29Bzv2u9Ee3oOd+13oqHn6V4ZBvHelWPclufML77eg537XeiPb0HO/a70VDzIzKVYdyW58wvnt6Dnftd6I9vQc79rvRUPMjMlWHclufML57eg537XeiPb0HO/a70VDzIzJVh3JbnzC+e3oOd+13oj29Bzv2u9FQ8yYFKsO5Lc+YXr27Bzv2u9F77cg537XeiowThWrDuS3PmF39twc79rvRe+2oec+13oqWEwSrDuS3PmFy9sQ859rvRe+14ec/s70VPCcJVh3JbnzC7wTte3Mw3G9dRw/YxdkzyhcgwHYDrd4rr+H7GLsmeULz/AJ8ficsPX+mX7QhnqrcOdrF2Z8y5djW3k6x4BdR4c7WLsz5ly7GtvJ1jwC9Q9pvOzwg17kpTOSlaWUjkidyRBG5IU7khRSFLdMVG5A10XUZKMygkui6jzIzIJLrbcGIpnVAfS5eNp2uma135uLF3NaB8xIJ0LS5lnYTiDYH5zDne0gscJ5Yiwi97GMi978qplZZImT09VVUsU1HMwtZNHpME/HPsWMzAEEu0lnSrHidRG+aufKYh7NZTwREUjZuLe8APkMTbZgDcAamkkqnV3C7jywzU7n8W4OZmramzXDU4AOtfpUdNwobFK6aOlLZX3zvFbVXdfSc3xWOnSiLPUuijfx74WyPiwuR8nG0wgbK+SRjKZzoLnKSHOvqOi6bB5HP/AAfGGnZNXuDwIcPEpfDcMDXEkMhaA03A6yqlNwgjeZS+jzGctMpdW1RL8pu3Mc2mx1LIpeF3FRiOKnexjXZg1tdVAA3vo+LRpF7INdwiMYq6oQtDYxUSBjW6gGuI0dGha+6atqBJI97WZA9xdlzufYnS45naTc3OneocyipLouo8yMyCS6LqO69CCQJ2qMKRqBwnCQJwqiQJglCYIHCYJQmCGVqwHYDrd4rr+H7GLsmeULkGA7AdbvFdfw/YxdkzyhZdPpNq3eUFW4c7WLsz5ly7GtvJ1jwC6jw52sXZnzLl2NbeTrHgFYe0zZ4Qa9yUpnJStLKRyQpytphXB987DLI9sFM0/FPLqPRG3XIepBpHlbag4LVUzc4h4uPnahwhj/zP1/QFZ5x2Ck0YfBd4/wDVVbQ+S++OP5Y+5aHEsSlqXZp5ZJD/AFuJt1DUPog2rsApmbfFaYEa200T5zfdmBASGkwsa6yvd+imY0fcVoCo3ILA6hwx3y11aztaRrh9rl4ODEUn7tilDKTqZNmp3n6PuP7qulRuQbbFuDtVSjNPTyNZzjQHxdfGNuB9VqrrPwjH6ikP/LzyMHKy+Zh6Cx12nuW3/HUVd+8MFDUH+PTtJpnu3yw62X3tQVq6Myz8cwSajcBM0Fr9McsZzRSt5Cx48DpWsuoqTMjMo7ougkzIzKO6LoJLouo7ougkui6S69CBwnCQJwgcKRqjCkagcJwkCcKokCYJQmCBwmCUJghlasB2A63eK6/h+xi7JnlC5BgOwHW7xXX8P2MXZM8oWXT6Tat3lBVuHO1i7M+ZcuxrbydY8Auo8OdrF2Z8y5djW3k6x4BWHtM2eEGvclcU5W7wGjZHG6sqm5oonZYYz/HnGkN/Q3WepaWUUeHR0sTaiuZndIL09KdBk/8Acm5Wx9HKtRi2Ky1Lg6V9w3QxjfhjjHII2DQ0WS4lXSVEr5ZnZnvNyeToaByAcgWIUEbkhTuSFFI5RuUjlG5AhUZUhUZUCFLdMUjkG6wThE+nHFSNbUUrj8dNNpYf6o+bfuIU3CDBGMjbVUbzJSSOy3dtIJD/AAphyHc7luPrXLrb8GsdNHKSWiSCYZKiB3yyxnWOhwvcHeqjWXRdbXhPg4ppGOhcX01SzjaaU8sZ1sdukZcAg/7aa6ipLouo7ougkui6jzL0FBICnCRqcKiQJwkCdqBwpGqO6mpozI5rWAuc4gNa3SSTyAKD0JwmqaZ8TyyRpa4WuDblFwQRoItyhKFUSBMEoTBA4TBKEwQytWA7AdbvFdfw/YxdkzyhcgwHYDrd4rr+H7GLsmeULLp9JtW7ygq3DnaxdmfMuXY1t5OseAXUeHO1i7M+ZcuxrbydY8ArD2mbPCCLDKB1TPFCzXI4C/8AKNbnHoABP0WXwnxFssrY4dEFK3ioRvA+aQ9LnC/csvBT+Hoqup1PlIpYTuzDNM4f4bBVwrSykKQrYOwqT8P+IJjEZdlaDI3O43scrNejlStNOKd12zmoJOUhzRC0XFtFruJF0GtcV4GE3s1xtrsCbddtSz6fEzHDJEIac8be8j4s0oBAFmPv8Oq/1KipMUmhZIyKV7GTC0jW2s8WIsdG4kIIKSglmzcTFJJlF3cWwuyjebahoSUWHy1Di2CKSVwFy2NtyG6ie8r2nq5Is3FSyMzCzuLe5uYcgdY6dZ71DHO5hux72Hexxabbrgooio5JJDHHHI6QEjIxpLrt+YZRuUE0DmuLHMcHg2LC0hwO4t13U9PO9j87JHscL/G1xDtOv4hp0p2VkjZRM2V/HB2YSk3fm1ZiTrKDXO7uvQlss+txKWWcTTuEsgc0kyNBDslrBzRYEaLHejEa5s0nGGCKEOyhzKVuRuj53NBJs43Kg15aBrOnoUbxbqWyxeOmzt/CunyOaLioy5muJ1Zm6CNWlLjeCzURDagMHGNzMMcjXte29szXNOq6Dc8EpBWQS4dIReTNNROd/DqWgkx/pkFwenrVUJIuCCCCQQdYI0EHqKWnqXRPZJGcr43B7Due0gtPerH/AMQImmpjqom2ixGBlS3cJD8MzB0hwuf1Kiu5kZlFdMAoMmmgdK9jI2lz5HBrGjW5zjZo71f+EeGQxYbPDFEM+G1EAlnyWMz5g4SkOI0sDiGj9KqXBvFxRPklEZdMIXNp3G2WKRwsZSNbiBqA3lZ9PwsmdT1cNVLPUNqIWNZxkuYRvY8PD9PVbQqjDwLDo5y8SzSRBoBHF00k9ySbghny9amxrDIoMnFTyy5iQeMpJILWtaxf82vkWFhuJzU5caeaWIvADjE8tuBqBt1qWvxaeoy/iJ5pQ0nLxry619dr6kFn4B4DG+emkq2ksme7iIeWURguklfuhblt/USBqUkPB+nqeJlNVKHVtU6NrIaZuSN5s8tJc4fC0OAJA5DZYPB3hlUUoc0zTOYKd8ULLtDInusGP1XIbY2F+VPScJcj6Nz2PeaczOkOduaSSfNnkabWBAItf+VBsuCeGtzYlJTZJeIhbFC6sZE1ple/S4hxLdAYbadN1m4g4Qwu9qx03Gl8ToI6ERsnyac7nPjsBG4aOnSqi/EmCjkpo432kqxMXSOBJYxhbGw2HzXNyU9TiglpKeFzDxlM5wZJcW4l2kRkdB1dCCLFKrjpnPGbKbBgcGgtY0ANYAz4QABYAcixwkCcIJAmCUJggcJglCYIZWrAdgOt3iuv4fsYuyZ5QuQYDsB1u8V1/D9jF2TPKFl0+k2rd5QVbhztYuzPmXLsa28nWPALqPDnaxdmfMuWY7tpf9flCsPaZs8INzjVDJ+Eo4443FsFKamYiwDTO7Rcnls3UtGa5op+JFPFmc/M6Y3MhAN2ht9DQOjWtzw4keKp7LvEYigGUZsl2xC1xquLlVrKbXsbbwCR3rSyoyEhUmUnUCbayASB9QkDSdQJ6gT4IInJCpA0nUCegAk9wSlpOgAk7gCSgicktcqQg3tY33WN+qyQuyn4gRyWsb3OrR/rWivSvHADWnAsdII0fmBB7ivJRb5muHWCPFQRSMBCx5G/KFlPBA+VwB1EtIB6idahLSBch1uQkG30KDFmOkpIz8TeUDkOrq6lJKw6Tlda+vKbd+pJGw3vldYcuU2+p1INjiVS2tlj4ikjhkeWsLIScj5C6wc1rvkvcaFt6+N7sILJmFsmGYi6JzXCzmxztBAP/UVUawkOs1xs4aWgm31GpXDA2S1GG47LM90gy0pLnvu7PFICDp5MlhfoVFN4yxP9tCmDvhBOvpULB8R6ApL3b1FQSMJ0A6ipwbOA5LJsNp31MkcMYHGSuDGXIALjqFzqU1Hh0ktSyCNl5XOLA29vibfNc8gFjc9CCEG2W3KT4qR5ta29RzNymxtdrnNJBuLgkGx5R0p5eTrVEkL7k7l6HXBvvTUzHPkaxjS5ziGta0XJJ1ABPWUroHyxS2D435XAOBAO6460ETU7VkYRhslVJxcADn5XO+JwaA1ulxLjoC2dRwXqImF7wwxsLeMdBIyYsaTbMWMN7INOE4WyxLCQyeKOBzpOPZG5lw0kmQ2aLsJa7fcar25CpjwZqQ17uLaQzP8ALI0ue2M2e+NnzPYLfMAiNWEwShMEDhMEoTBDK1YDsB1u8V1/D9jF2TPKFyDAdgOt3iuv4fsYuyZ5Qsun0m1bvKCrcOdrF2Z8y5Zj22l/1+ULqfDnaxdmfMuW44P20vX/APkKw9pmzwgtX/EZ87eLtK51NMyMlgylrZmgEgm1wTcOGnlKqEWKzMhdCyVwiffNGA2zr2vfRfkHKrVjGL8XJE6SPjaauooHSxE/ma3IXxn8sgsNPQtLiHB45DNRv/EU/KWj9rF/TLHrFt60sjWUmKzQMkZDK5jJRaRoDSHC2XTcX1HkSYbis1MXGnldGXgBxaG6QDoHxArFvdKUVPh+JS0z+MgldG8gjM0Amx0kaQUtPik0Upmjlc2UlxMgDb/H82sW09SxnJCgnGIyifjxI7js5fxlm5sx1u1Wv9FFW18s0wmlkc6UOa7ObXzM+U2AtotuUTlG5FZuJYlLVP4yeV0jw0NzOy3AFyBoA3lNimMzVWX8TK6UsBDcwboB1gWA3LW3QZD0KDPxDGZ6iOOOWVz2Qj9m0htm6MuiwB1aNKhrsXnlgZC+ZzooSMkZDbNsCBYgX5TrWC95KjDrIM12NTOpxTOnfxAN+Js3LfNmvfLfX0opMcqGQyQMme2CS5fGA3K69gb3F+QcvIsEtB5bJ6WlfM9sVPG+R7tTY2lzj9BqHSqJcMxuelbMyGd8TJtoGhpDwARpu0nUSNG9XzCaIUeCYjFJcT1FO2oezliidIyKBrhyF1nOstMyhp8LIkq+LnrW6WUjHB0UDuR9Q8aC4a8g/wDKI6xz8MxSplc50tZV00Jc78xYeOcB0BvIiKcG6XdS9h0aTy6E5I067kJW2tYqKy6Gq4maCVuuKVkmj+lwd4BX/hVCMNlrpxYS18rmU1tbKdwa+eYbsxdkHUubiw6VmVeISVBaaiV8jmMDGuebkMGpo6BdVGy4NzMbN8T6NjeLIBrYXyx3zDQ1rdId07rrZcLJ43xxCOXDXnjNIoqaSJ+r8xdrb0Krty6NehSZwdd9aDof/D6iia+B8dTTfiZZCZWuceMhp2fE5sbcts7g34nE6G6BrTUdWXBmRlG91Vi3FiVsTZBJHokmfmkGnaBvRk0KhUda+KQvje5hLXNJabHK4WcOohSRVz2tjDJHjiXl8djbI4m5c3cbgdyH4XPDK+MvxeqljtCyI0zGU7WRHLNKQA3RbNlbrKikqIqSiE2GRys/F3hlllkDpIXRuzcUGgZfiGnNpuFVZ8SlkEgfK5wmkEkg0We8CwcQBrAXkdW8RuiD3CN7g5zL/CXN1OI3oN/htS9kctbK4uld/wAvTFwA/aubZ8gA0AMZcC2gF6z8BY+GWobOyUVVJRy8VJI/NFDGI9DSBruHHKbkXKqctS97I2OcSyIODG8jQ45nW6zrWbLjNQ+EQvqJXRCwyOdcWHyg8pA5ASgw2pwlCYIHCYJQmCGVqwHYDrd4rr+H7GLsmeULkGA7AdbvFdfw/YxdkzyhZdPpNq3eUFW4c7WLsz5ly7GtvJ1jwC6jw52sXZnzLl2NbeTrHgFYe0zZ4QbCpHH4ZE/81FO6J3ZS2dGerNcLSUdbJA8PhkfG8fmYbG248hHQVtuClW1sr4ZjaKsj4l5Oprjpif8AR/itRXUjoZHxSCz43Frh0jlHQRp+q0srcOxyCo/fqQZj/HoyIpOtzD8L0nu/BN+54hC483VAwSdVz8LvotCVG4b0G2reCtZELupZS3+aK0jeu7CVpZoyzQ9rm/raW+Kyaaulh0wzTR9nI9o7gbLaM4Z1rdBqOMG6eOOTzNugrmYbx3pHKzHhfI7aUmGv/VRtBPXYpDwpZy4XhZ/6BH/dBWHFRueN471aTwrA+XDMLb/8a/i5J77VDdnFQxdMVHED3m6Cv01DLKbRQzSE83E93gFuYuA1YRmmjjpmfz1c0cY/y3zf2UdXwxr5AQ6tnAPJGRGP/rAWhmcXnNI5z3fzSOL3f5nElQWI4fhtPt6uaseP4VEzi4j0GeQaR+lR1XC6UMdFRRRUULtbaa/Gv7Sc/EfpZaCyLIqIjWfqf+5KtXChv4ehw2k1PyOq5hyh89xGD0hjf7rC4J4QKqpaJLCCEGaoeflbCzS656fl+qx+EGKGsqp53AjjX3a3+VgAaxo3WaAqjV5UZVJZFlFRhqYBNZFkHrVIFG1OFRIE7UgThBIE7UgTtUDhOEgThVEgTBKEwQOEwShMEMrVgOwHW7xXX8P2MXZM8oXIMB2A63eK6/h+xi7JnlCy6fSbVu8oKtw52sXZnzLl2NbeTrHgF1HhztYuzPmXLsa28nWPAKw9pmzwg17grHVj2hS8a3TVUbA2YcssA0NlA5XN1H/ZVxymw+vkp5WSxOyvYdG4g62uHK0jWFpZWIkcrJi+GsqI3VVE2zB+8U40ugcdbmga4jrBGrwrRQK5RuUjlG5FIVG5SFRuQIVGVIUtlBHZFlJlRZBHZNHEXENaC5ziA1rRckk2AA6ymDLkAAkkgADSSTqAHKVboohhDBJIGuxCRv7KM2IpGOG1kGrjSL2HIqMfHiKCl/AMIM0pbJXPadThpjpgRrDb3PSelVWyle4uJLiS5xJcXG5JJuSTykk3XllBHZFlJlRlQR2RZSZUZUCWXoTZUZUHrU4SBOEEgTtSBO1A4ThIE4VRIEwShMEDhMEoTBDK1YDsB1u8V1/D9jF2TPKFyDAdgOt3iuv4fsYuyZ5Qsun0m1bvKCrcOdrF2Z8y5djW3k6x4BdR4c7WLsz5ly7GtvJ1jwCsPaZs8INe5IU7kjlpZU+H4hJTStkheWPby6wRytcPzNO5bp9JBiJzU5jpqo/NTvOWGU74Hn5XH+UquFI5A9fRyQPLJo3xvGtr2kHrG8dIWM5WCl4UShgiqWMq4RoDKi5c3s5R8bf7pjR4fUbKolpH83VN4yL/AAys0gfqQVkqMq0O4EVLtMBpqgchp6iN1/o4grFfwNrxroqj6NB8Ch+VfsiysMfAqvdqop/8Qa0d7iFP7lSs01VRRUw5eNqGud9GsvdFVey2GD4JPVuLYIy4N+Z5+GNg3vedDQtvlw2n5aiueOSxp4L9J+dwWFi/CKepbxZLYoB8tPA3JEB0gaXnpddEbAV1PhoIpHNqau1jVZf2MO8U7T87v6/9lV5Xl7nOe4uc4kuc4kkk6yTyle5UZVFJZFk+VGVAlkWT5UZUCWRZPlRlQJZFk+VGVAll6E2VGVAwTtSNTtQOE4SBOFUSBMEoTBA4TBKEwQytWA7AdbvFdfw/YxdkzyhcgwHYDrd4rr+H7GLsmeULLp9JtW7ygq3DnaxdmfMuXY1t5OseAXSuFlQZZG2jlaGNIu9hF9OsdCp9VhDZHuc5xu48g6OvoXjGyMdss5y6Z1ylpjjGFVKQq0+wI/5n94R7vxb3949F2s6+uNXZxVCkcraeDsW9/ePRee7cW+TvHolnWVdnFQKjcrkeDUO+TvHovPdiHfJ3j0UswWrs4peTTewvvWQyrlb8s0w/TK8eBVr92Id8nePRHuxDvk7x6JZgVtipS1D3fNJI79Ujz4lQBgGoD6BXT3Yh3yd49Ee7EO+TvHolmBW2cU2yLK5e7EO+TvHoj3Yh3yd49EswK2zim2RZXL3Yh3yd49Ee7EO+TvHolmBW2cU2yLK5e7EO+TvHoj3Yh3yd49EswK2zim2RZXL3Yh3yd49Ee7EO+TvHolmBW2cU2yLK5e7EO+TvHoj3Yh3yd49EswK2zim2RZXL3Yh3yd49Ee7EO+TvHolmBW2cU2yLK5e7EO+TvHoj3Yh3yd49EswK2zim2XrVcfdiHfJ3j0R7sQ75O8eiWYFbZxUgmCtg4Mw75O8eiYcG4t8nePRLOsq7FVCYK0+7kW+TvHovfd6Le/vHorZ1pV2cVgJ2qye78e9/eEewY/5nJZ19KuziXAdgOt3iuv4fsYuyZ5QuV0NJxbMjbnSdQ3ro+GYheKMcTOMrWt0x7gBcadS56JY/eWeum+Gf5wxxtlocT5eteoWjZ8ZtX1Wa1YDl4hfNm+pD48QhC8OgQhCAQhCAQhCAQhCAQhCAQhCAQhCAQhCAQhCAQhCAQhCAQhCAQhCCaFbvD9Y60IXfV9Z9vxaaDUsooQvox+PmZ+v/2Q==

Iar densitatea este Masa : Volum big grin
Sper ca ti-am fost de ajutor,
Funda?